
FMBC 2024
Extended Abstracts of Lightning Talks

Bruno Bernardo Diego Marmsoler

April 7, 2024

Towards Formal Verification of DAG-Based1

Blockchain Consensus Protocols2

Nathalie Bertrand #3

Univ Rennes, Inria, CNRS, IRISA4

Pranav Ghorpade #5

The University of Sydney6

Sasha Rubin #7

The University of Sydney8

Bernhard Scholz #9

Fantom Research10

Pavle Subotić #11

Fantom Research12

Abstract13

There is a trend in blockchains to switch to DAG-based consensus protocols to decrease their energy14

footprint and improve security. A DAG-based consensus protocol orders transactions for delivering15

blocks, and relies on built-in fault tolerance communications via Byzantine Atomic Broadcasts.16

The ubiquity and strategic importance of blockchains call for formal proof of their correctness.17

We formalize the DAG-based consensus protocol called DAG-Rider in TLA+ and prove its safety18

properties with the TLA+ proof system. The formalization requires a refinement approach for19

modelling the consensus. In an abstracted model, we first show the safety of DAG-based consensus20

on leaders and then further refine the specification to encompass all messages for all processes. The21

specification consists of 683 lines and the proof system verifies 1922 obligations in about 5 minutes.22

2012 ACM Subject Classification Theory of computation → Logic and verification; Theory of23

computation → Proof theory; Theory of computation → Distributed algorithms24

Keywords and phrases Formal verification, Consensus, Blockchain, Theorem Proving, TLA+25

Consensus and DAG-based protocols. Consensus is a fundamental problem in26

distributed computing. It aims to coordinate processes so that they agree on some value(s).27

Consensus algorithms have recently become an important topic in “proof-of-stake” blockchains28

that collaboratively build an order for submitted transactions. Of particular interest are29

consensus algorithms that assume little about the environment, namely, asynchronous30

communications with malicious processes, namely Byzantine Fault Tolerant (BFT) [15].31

Early blockchain consensus protocols assume degrees of synchrony in the environment32

to ensure safety and liveness [16, 2, 11, 8]. Recently, a family of probabilistic asynchronous33

consensus protocols have been introduced that are based on Directed Acyclic Graphs (DAG-34

based protocols) [10, 1, 6]. These protocols report high performance while guaranteeing BFT,35

utilize processes fairly, and exhibit low communication complexity. Several leading blockchains36

thus have adopted DAG-based protocols as their main consensus mechanism [4, 5, 9].37

DAG-Rider [10] is such a DAG-based protocol and has two main components: (1) a com-38

munication layer and (2) an offline ordering layer. The communication layer asynchronously39

exchanges messages between processes in rounds using reliable broadcast. Messages contain40

transaction proposals and metadata forming a DAG for each node. For a process, the DAG41

provides a local view of the order of blocks with respect to happened-before relation [12]. Due42

to the asynchronous nature of the network, processes do not necessarily have the same local43

DAGs at any point in time. However they are guaranteed to have same DAGs eventually.44

The ordering layer selects anchor points, guaranteeing consistent selection across all the45

processes. This allows the DAGs to be locally totally ordered while guaranteeing that all the46

2 Towards Formal Verification of DAG-Based Blockchain Consensus Protocols

processes agree on the same total order of messages.47

Formal verification of DAG-based consensus. Blockchains provide mission-critical48

financial services and hence require rigour to show correctness. The verification challenges arise49

from the large number of possible interleaving in an asynchronous environment, the behaviours50

of Byzantine processes, and perhaps even more importantly the fact that correctness should51

hold for any number of participating processes.52

We report here on our TLA+ [13] specification and proof –both publicly available at [7]–53

for a DAG-based consensus protocol using the TLA+ Proof System (TLA-PS) [3].54

Procedural code is commonly modeled in TLA+ by a discrete transition system whose55

traces correspond to possible executions of the code. The naïve translation from the pseudo-56

code (by setting every variable from the protocol, including a variable for each process’s57

current line number, to be a variable in the specification) into a TLA+ specification is not58

viable. While direct, this model is very fine-grained and renders the proofs extremely tedious.59

To obtain a more succinct and tractable model, we employ several abstraction techniques:60

they remove unnecessary details and produce a specification that is amenable to proofs. First,61

we employ a procedural abstraction that ignores all states that are internal to a procedure and62

only represents the input/output behaviour of each procedure in the DAG-Rider protocol.63

For instance, in the wave_ready procedure of [10], the relevant variables are decidedWave,64

deliveredVertices, leadersStack, but not the loop variable w′ or the auxiliary variable v′.65

Second, because we focus on safety properties, we remove component features that are only66

required for liveness and have no impact on the safety proof. For instance, random coin tosses67

can be replaced with deterministic ones. Third, we use memoization to efficiently compute68

the values taken by recursive functions, by introducing a fresh state variable that stores the69

needed information to evaluate recursive functions in a single step. Finally, we separate the70

concerns and break the safety property into two, namely (1) consistent communication and71

(2) consistent leader election. For (1) we model the DAG-construction and show that the72

causal histories agree for a same vertex in the DAG of two different processes 1. For (2), we73

model the consensus protocol and prove that the same leaders are elected and in the same74

order. To obtain a complete yet simple model of the consensus protocol, we observe that it75

only needs reachability information associated with wave leader vertices to commit leaders76

and, therefore, abstract the content of DAG into the so-called leaderReachablity record. We77

combine consensus protocol specifications in DAG construction specifications to obtain one78

of the DAG-Rider protocols. This abstraction is not only interesting for DAG-Rider but79

could be helpful to generalize to other DAG-based protocols.80

Given our faithful specification of DAG-Rider in TLA+, we prove its expected safety81

properties by identifying invariants and proving them within TLA-PS. When using TLA-PS82

and similar proof systems, the most challenging task is to come up with relevant inductive83

invariants (that hold initially and are preserved when taking transitions), see for instance [14].84

For DAG-Rider, to prove the consistency of communication during the DAG construction85

we identified 6 new invariants, and to prove the consistency of leader election we identified86

10 new invariants. We prove each one of the invariants hierarchically by induction.87

Table 1 provides some metrics on our experiments, showing quite reasonable performances88

in terms of verification time. Most importantly, due to the modularity of our specification, we89

argue the effort to adapt proofs is minimal when making small changes to the specification.90

Conclusion. Our work on DAG-Rider is an important and promising step towards a91

general library for specifying and verifying DAG-based consensus protocols. Beyond the92

1 The non equivocation of blocks is guaranteed by reliable broadcast abstraction

N. Bertrand, P. Ghorpade, S. Rubin, B. Scholz, P. Subotić 3

Table 1 Summary of experiments. An obligation is a condition that TLA-PS checks. The time
to check is on a 2.10 GHz CPU with 8 GB of memory, running Windows 11 and TLA-PS v1.4.5.

Metric DAG-Constr. Spec. Consensus Spec. DAG-Rider Spec.
Size of spec. (# loc) 460 250 710
Size of proof (# loc) 521 782 1303
Max level of proof tree nodes 10 9 10
Max degree of proof tree nodes 7 7 7
obligations in TLA-PS 722 1205 1927
Time to check by TLA-PS (s) 224 87 311

specification of DAG-Rider, our specification reveals interesting insights into developing a93

modular and efficient TLA+ specification that is amenable to proofs in TLA-PS.94

References95

1 Leemon Baird and Atul Luykx. The hashgraph protocol: Efficient asynchronous BFT for96

high-throughput distributed ledgers. In Proceedings of COINS 2020, pages 1–7. IEEE, 2020.97

doi:10.1109/COINS49042.2020.9191430.98

2 Vitalik Buterin. Ethereum white paper: A next generation smart contract & decentralized99

application platform, 2013. URL: https://github.com/ethereum/wiki/wiki/White-Paper.100

3 Denis Cousineau, Damien Doligez, Leslie Lamport, Stephan Merz, Daniel Ricketts, and101

Hernán Vanzetto. TLA + proofs. In Proceedings of FM 2012, volume 7436 of Lecture Notes102

in Computer Science, pages 147–154. Springer, 2012. doi:10.1007/978-3-642-32759-9_14.103

4 Aptos Foundation. Understanding Aptos: A comprehensive overview, 2024. URL: https:104

//messari.io/report/understanding-aptos-a-comprehensive-overview.105

5 Fantom Foundation. Lachesis aBFT, 2024. URL: https://docs.fantom.foundation/106

technology/lachesis-abft.107

6 Adam Gagol, Damian Lesniak, Damian Straszak, and Michal Swietek. Aleph: Efficient atomic108

broadcast in asynchronous networks with byzantine nodes. In Proceedings of AFT 2019, pages109

214–228. ACM, 2019. doi:10.1145/3318041.3355467.110

7 Pranav Ghorpade. TLA+ specification and Proofs for DAG-Rider. https://github.com/111

pranavg5526/DAG-Rider, 2024. [Online; accessed 1-Feb-2024].112

8 Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zeldovich. Algorand:113

Scaling Byzantine agreements for cryptocurrencies. In Proceedings of SOSP 2017, pages 51–68.114

ACM, 2017. doi:10.1145/3132747.3132757.115

9 Hedra. Streamlining consensus, 2024. URL: https://hedera.com/blog/116

streamlining-consensus-throughput-and-lower-latency-with-about-half-the-events.117

10 Idit Keidar, Eleftherios Kokoris-Kogias, Oded Naor, and Alexander Spiegelman. All you need118

is DAG. In Proceedings of PODC 2021, pages 165–175. ACM, 2021. doi:10.1145/3465084.119

3467905.120

11 Jae Kwon. Tendermint: Consensus without mining. https://tendermint.com/docs/121

tendermint.pdf, 2014.122

12 Leslie Lamport. Time, clocks, and the ordering of events in a distributed system. Commun.123

ACM, 21(7):558–565, jul 1978. doi:10.1145/359545.359563.124

13 Leslie Lamport. Specifying Systems, The TLA+ Language and Tools for Hardware and Software125

Engineers. Addison-Wesley, 2002. URL: http://research.microsoft.com/users/lamport/126

tla/book.html.127

14 Leslie Lamport. Teaching concurrency, 2009. URL: https://lamport.azurewebsites.net/128

pubs/teaching-concurrency.pdf.129

15 Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine generals problem. ACM130

Trans. Program. Lang. Syst., 4(3):382–401, jul 1982. doi:10.1145/357172.357176.131

16 Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008.132

Secure Smart Contracts with Isabelle/Solidity1

Diego Marmsoler # Ñ2

University of Exeter, UK3

Abstract4

Smart contracts are programs stored on the blockchain. They are usually developed in a high-level5

programming language, the most popular of which being Solidity. Smart contracts are often used6

to automate financial transactions and thus, vulnerabilities in smart contracts can result in high7

financial losses. Therefore, it is important to guarantee their correctness which is best done using8

verification.9

To this end, we developed Isabelle/Solidity, a deep embedding of Solidity in Isabelle. In the10

following, we describe our work on Isabelle/Solidity. We first describe the supported subset of the11

language and how it is evaluated. Then, we take a brief look at various applications of Isabelle/Solidity.12

Finally, we discuss ongoing and future work on Isabelle/Solidity.13

2012 ACM Subject Classification Software and its engineering → Software verification; Software14

and its engineering → Formal software verification; Theory of computation → Logic and verification15

Keywords and phrases Smart Contracts, Blockchain, Theorem Proving, Isabelle16

Digital Object Identifier 10.4230/OASIcs.CVIT.2016.2317

Category Extended Abstract18

1 Introduction19

Blockchain [11] is a novel technology to store data in a decentralised way, providing trans-20

parency, security and trust. Although the technology was originally invented to enable21

cryptocurrencies, it quickly found applications in several other domains, such as finance [5],22

healthcare [1], land management [2], and even identity management [14].23

One important innovation which comes with blockchain are so-called smart contracts.24

These are digital contracts which are automatically executed once certain conditions are met25

and which are used to automate transactions on the blockchain. For instance, a payment26

for an item might be released instantly once the buyer and seller have met all specified27

parameters for a deal. Every day, hundreds of thousands of new contracts are deployed28

managing millions of dollars’ worth of transactions [13].29

Technically, a smart contract is code which is deployed to a blockchain and which can be30

executed by sending special transactions to it. Thus, as for every computer program, smart31

contracts may contain bugs which can be exploited. However, since smart contracts are often32

used to automate financial transactions, such exploits may result in huge economic losses. In33

general, it is estimated that since 2019, more than $5B was stolen due to vulnerabilities in34

smart contracts [3].35

The high impact of vulnerabilities in smart contracts together with the fact that once36

deployed to the blockchain, they cannot be updated or removed easily, makes it important to37

“get them right” before they are deployed. In the following, we describe our work to address38

this problem.39

2 Isabelle/Solidity40

Smart contracts are usually developed in a high-level programming language, the most41

popular of which is Solidity [4]. Solidity is based on the Ethereum Virtual Machine (EVM)42

and thus it works on all EVM-based smart contract platforms, such as Ethereum, Avalanche,43

© Diego Marmsoler;
licensed under Creative Commons License CC-BY 4.0

42nd Conference on Very Important Topics (CVIT 2016).
Editors: John Q. Open and Joan R. Access; Article No. 23; pp. 23:1–23:3

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

23:2 Secure Smart Contracts with Isabelle/Solidity

Moonbeam, Polygon, BSC, and more. As of today, 85% of all smart contracts are developed44

using Solidity [6].45

Isabelle/Solidity is a deep embedding of Solidity in Isabelle/HOL [12]. A first version46

of the semantics is described in [7]. Since then the language was constantly extended and47

the current version is available in the archive of formal proofs [9]. It supports the following48

features of Solidity:49

Fixed-size integer types of various lengths and corresponding arithmetic.50

Domain-specific primitives to support transferring of funds or query balances.51

Different types of stores, such as storage, memory, calldata, and stack.52

Complex data types, such as hash-maps and arrays.53

Assignments with different semantics, depending on data types.54

An extendable gas model.55

External and internal method declarations and the ability to transfer funds with external56

method calls.57

Declaration of fallback methods which are executed with monetary transfers.58

Dynamic creation of new contract instances.59

To ensure that the semantics complies with the reference implementation the semantics60

comes with a grammar based fuzzying framework to allow for automatic testing of compliance.61

The testing framework automatically generates random Solidity programs and corresponding62

states. The semantics is then used as an oracle to predict the modifications to the state63

which are then inserted as assertions to the original contract. Then, the contract is deployed64

to the Blockchain and executed. If the assertions are violated a deviation from the semantics65

is reported. The framework is described in more detail in [8] and it is used to guarantee66

compliance of the semantics to Solidity.67

3 Applications68

Being a deep embedding, Isabelle/Solidity can be used not only to reason about individual69

contracts but also about tools and calculi for Solidity. Thus, so far, Isabelle/Solidity was70

used for the following use cases:71

The verification of the correctness of a Gas-optimization tool for Solidity.72

The verification of the soundness of a methodology to verify invariants for Solidity73

contracts.74

The verification of the functional correctness of a simple Solidity token.75

In particular, in [7] we describe the implementation of a constant folding tool for Solidity.76

The tool replaces constant expressions with their corresponding evaluation. For example, the77

expression int16(250) + uint8(500) would be replaced with the expression int16(494)78

which costs 12 Gas less. However, since the optimizer is modifying the source code of79

a program it is important to guarantee that it does not modify its semantics. Thus, we80

implemented the optimizer in Isabelle and verified it using Isabelle/Solidity.81

In another example, Isabelle/Solidity was used to verify the correctness of a calculus82

for Solidity which is described in [10]. In essence, the calculus allows for the verification83

of invariants for Solidity contracts. To this end it requires a user to specify the following84

components.85

An invariant: A predicate over the contract’s member variables and the contract’s balance.86

Preconditions for internal methods: Predicates over the method’s formal parameters, the87

contract’s member variables, and the contract’s balance.88

D. Marmsoler 23:3

Postconditions for internal methods: Predicates over the contract’s member variables and89

the contract’s balance.90

A precondition and postcondition for the contract’s fallback method: A predicate over91

the contract’s member variables and the contract’s balance.92

The method then requires a user to verify postconditions for internal methods and the93

fallback method as well as that external methods preserve the invariant. To ensure that94

the proof obligations indeed guarantee that the invariant is not violated we formalized the95

calculus in Isabelle and verified its soundness using Isabelle/Solidity.96

Finally, in [7, 10], we used Isabelle/Solidity to verify a basic version of an Ethereum token.97

In particular, we formalized the contract in Isabelle and verified that the sum of all balances98

corresponds to the internal balance of the token contract.99

4 Ongoing and Future Work100

We are currently working on several topics related to Isabelle/Solidity. First, we are101

constantly adding new features to our semantics as for example inheritance between contracts.102

In addition, we are currently verifying type safety of the language. To simplify the verification103

of individual contracts we are currently also working on an alternative, shallow embedding104

of Solidity in Isabelle. Finally, we are working on a verified compiler for Isabelle/Solidity to105

EVM bytecode.106

References107

1 Asaph Azaria, Ariel Ekblaw, Thiago Vieira, and Andrew Lippman. Medrec: Using blockchain108

for medical data access and permission management. In 2016 2nd international conference on109

open and big data (OBD), pages 25–30. IEEE, 2016.110

2 Gertrude Chavez-Dreyfuss. Sweden tests blockchain technology for land registry, 2016.111

3 CipherTrace. Cryptocurrency crime and anti-money laundering report. Technical report, 2021.112

4 Ethereum. https://docs.soliditylang.org/.113

5 Jemima Kelly. Banks adopting blockchain ’dramatically faster’ than expected: IBM, 2016.114

6 Defi Llama. Tvl breakdown by smart contract language, 2022.115

7 Diego Marmsoler and Achim D. Brucker. A denotational semantics of solidity in isabelle/hol. In116

Radu Calinescu and Corina S. Păsăreanu, editors, Software Engineering and Formal Methods,117

pages 403–422, Cham, 2021. Springer International Publishing.118

8 Diego Marmsoler and Achim D. Brucker. Conformance testing of formal semantics using119

grammar-based fuzzing. In Laura Kovács and Karl Meinke, editors, Tests and Proofs, pages120

106–125, Cham, 2022. Springer International Publishing.121

9 Diego Marmsoler and Achim D. Brucker. Isabelle/solidity: A deep embedding of solidity in122

isabelle/hol. Archive of Formal Proofs, July 2022. https://isa-afp.org/entries/Solidity.123

html, Formal proof development.124

10 Diego Marmsoler and Billy Thornton. Sscalc: A calculus for solidity smart contracts. In Carla125

Ferreira and Tim A. C. Willemse, editors, Software Engineering and Formal Methods, pages126

184–204, Cham, 2023. Springer Nature Switzerland.127

11 Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System. 2008.128

12 Tobias Nipkow, Markus Wenzel, and Lawrence C Paulson. Isabelle/HOL: A Proof Assistant129

for Higher-Order Logic. 2002.130

13 YCharts.com. Ethereum transactions per day, 2022.131

14 Bryan Yurcan. How blockchain fits into the future of digital identity, 2016.132

CVIT 2016

